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Effects of frustration on the anisotropic triangular lattice bosons
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We study the extended hard-core Bose-Hubbard model with nearest-neighbor interactions on a triangular
lattice with spatial anisotropy by quantum Monte Carlo simulations. The effects of the geometric frustration or
the anisotropic strength, represented by the ratio ¢’/ between the intrachain nearest-neighbor hopping ¢’ and
the interchain hopping ¢, are studied. We find that for small values of anisotropy ratio 7'/, a solid state emerges
at p=1/2 and a supersolid is unstable toward phase separation; for large values of anisotropy ratio ¢'/¢, solid
states emerge at p=1/3, 2/3, and a supersolid phase is stable in the region p<<2/3; for intermediate values of
anisotropy ratio ¢'/¢, three kinds of solid states at fillings p=1/3, 1/2, and p=2/3 coexist and no stable
supersolid phase is observed. At half filling, we find that with increasing frustration '/, the p=1/2 solid
transitions indirectly into the supersolid via an intervening superfluid.
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I. INTRODUCTION

In the past several years, the Bose-Hubbard model and its
extensions have been extensively studied on various
lattices.!!® This is partially due to the potential realization of
these models in ultracold atoms in optical lattices.!>-?° In-
triguing quantum phases, including supersolid (with coexist-
ing diagonal and off-diagonal long-range orders), valence-
bond solid, and striped phases, have been found.®'218 Tt has
been checked that there is no stable supersolid (SS) phase in
the simplest hard-core Bose-Hubbard model with only the
nearest-neighbor interactions in a square lattice due to the
solid-superfluid phase separation (PS). To stabilize a super-
solid on the square lattice, the next-nearest-neighbor interac-
tion is included, and in this case a striped supersolid
appears.” Besides the next-nearest-neighbor interactions, the
lattice frustration may also stabilize a supersolid against the
PS. This has been shown in the hard-core Bose-Hubbard
model on the isotropic triangular lattice around half
filling,”'? however, the supersolid phase is not favored in
more complicated frustrated lattices such as the Kagome
lattice.'® Therefore, it will be interesting to investigate the
effects of lattice frustration on the possible supersolid
phases.

Another importance of studying the Bose-Hubbard model
comes from the fact that the model can be mapped to the
spin-1/2 XXZ model in an external magnetic field via
Matsubara-Matsuda transformation.?! The possibility to real-
ize a supersolid phase in spin models is also of great interest
as these quantum spin systems may be realized in real
materials,>??> and indeed a supersolid phase in the dimer-
based frustrated quantum magnets has been reported very
recently.?3-2

In this paper, we investigate the effects of lattice frustra-
tion on supersolidity by studying the hard-core boson model
on an anisotropic triangular lattice. The geometric frustration
or the anisotropic strength is described by the ratio ' /¢ be-
tween the intrachain nearest-neighbor hopping ¢' and the in-
terchain hopping ¢ [see Fig. 1(a)]. We find that for small
values of anisotropy ratio #'/f, a solid state emerges at p
=1/2 and a supersolid is unstable toward phase separation
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due to the domain-wall proliferation mechanism. These be-
haviors are similar to those of a square lattice without frus-
tration. For large values of anisotropy ratio 7'/, solid states
emerge at p=1/3,2/3 and a supersolid phase appears in the
region p<<2/3. In particular, for intermediate values of an-
isotropy ratio ' /¢, three kinds of solid states, with respect to
the filling factors p=1/3, 1/2, and p=2/3 coexist. In this
case, no stable SS is observed in our calculations. In addi-
tion, we observe solid-superfluid-supersolid transitions at
half filling as the geometric frustration #'/¢ is increased.

II. MODEL AND METHOD

We consider the extended hard-core Bose-Hubbard model
with nearest-neighbor interactions on an anisotropic triangu-
lar lattice,
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FIG. 1. (Color online) (a) Schematic structure of 2D anisotropic
triangular lattice. The hopping integral and the repulsive interaction
are t and V along a,, ¢’ and V' along a,. a;, a, denote the primitive
vectors. (b) The solid state at p=1/3 for the isotropic triangular
lattice ¢’ /t=1. (c) The solid state at p=1/2 for ¢’ /t=0.
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where a (a;) is the creatlon (annihilation) operator of the
bosonic atom at site i, n;=aq, a is the number operator, and u
is the chemical potent1a1 (i ]) (<z j>) runs over the nearest-
neighbor sites along the chain (between different chains),
and the corresponding nearest-neighbor hopping integrals
(repulsive interactions) are denoted by ¢’ (V') and r (V) [see
Fig. 1(a)].

The model has two limiting cases. At #'/¢=1, the model
reduces to an isotropic-triangular-lattice model with highly
geometric frustration. In the classical limit (z,#'=0), two
solid states exist at fillings p=1/3 and _p= 2/3, where one or
two of three sites is filled in a \3 X3 ordering with wave
vector Q;=(47/3,0). When a small hopping parameter ¢ is
turned on, the system exhibits a supersolid phase at fillings
1/3<p<2/3.°12 The emergence of a supersolid on the iso-
tropic triangular lattice can be viewed as arising from an
order-by-disorder mechanism, in which an extensive degen-
eracy of the classical ground states is lifted by quantum fluc-
tuations (finite hopping #).”® When ¢ dominates, a uniform
superfluid phase emerges.

At t'/t=0, the model is topologically equivalent to a
square lattice without frustration. At half filling, the ground
state is a checkerboard solid, where one of two sites is filled
with wave vector Q,=(2,0) [see Fig. 1(c); this is a little
different from a square lattice, where the p=1/2 solid real-
izes a \2X\2 ordering with wave vector (7, m)]. In the
hard-core case, a supersolid phase is unstable toward phase
separation.”

These two limiting cases (square and isotropic triangular
lattice) have been studied a lot before. In this paper we focus
our study on the anisotropic case. We set a=t'/t=V'/V,
where 0=a=1 represents the anisotropic strength for an
anisotropic triangular lattice. In the classical limit (z,¢'=0), a
meaningful chemical potential is u>0, or otherwise no
bosons are present. Increasing the chemical potential, several
kinds of solid phases at fillings p=1/3, 1/2, 2/3 may emerge,
depending on the value of the anisotropic strength ¢'/t. At
even larger u (u>4V+2V’), the lattice is completely filled
with density p=1. In the hard-core limit, due to the particle-
hole symmetry, the results are symmetric with respect to
m/V=2+a. Hereafter we set V=1 and use V as the energy
unit.

The method we employ is the stochastic series expansion
(SSE) quantum Monte Carlo (QMC) method with directed
loop update.?*3* We now portray our QMC simulations. In
order to characterize different phases, we evaluate the static
structure factor S(Q) and the superfluid density p;,

1 .
S(Q) = =2 QU nn ),
N~ ’
ij

(W)
4p

where W is the winding number fluctuation of the bosonic
world lines,** B is the inverse of fictitious temperature, a

a

ps = ’ (2)
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FIG. 2. (Color online) (a) The boson density p, (b) the structure
factors S(Q)), (c) S(Q,), (d) the superfluid p, as functions of the
chemical potential u for a=¢'/t=V"'/V=0.1, t/V=0.15 with n=12
and B=24, respectively.

labels the a; or a, direction (see Fig. 1), and N=L X L is the
lattice size. In order to distinguish different solid phases, we
calculate the static structure factors at wave vectors QO
=(47/3,0) and Q,=(27,0), respectively. A SF phase is
characterized by S(Q)=0 and p,#0; a SS phase is depicted
by nonvanishing both S(Q) and p,; a p=1/2 checkerboard
solid phase by S(Q,)=0, p,=0 and S(Q,) #0; a p=1/3 (and
p=2/3) solid by S(Q,) # 0, p,=0 and S(Q,)=0.

III. RESULTS AND DISCUSSION

We begin with the case for a small «. Figure 2(a) shows
the boson density p as a function of the chemical potential
for «=0.1 and ¢/ V=0.15. The p=1/2 solid plateau is clearly
observed while the p=1/3 and p=2/3 solid plateaux do not
exist. A jump in p, which indicates a first-order phase tran-
sition, appears on approaching p=1/2 from above. Figures
2(b)-2(d) show the static structure factor S(Q) with Q,
=(4m/3,0), Q,=(27,0), and the superfluid density p, as
functions of u for a=0.1, respectively. A pronounced aniso-
tropy of p, is observed. For u/V<3.7, the ground state of
the system is the p=1/2 solid with p,=0 while S(Q,) # 0; for
3.7<u/V<4.8, the ground state is a superfluid phase with
p,# 0 while S(Q)=0; at the critical point uo/V~ 3.7, both p,
and S(Q,) exhibit a sudden jump, confirming the first-order
phase transition; for u/V>4.8, both p, and S(Q) are zero
with p=1, and the ground state is a Mott insulator. There is
no region for both S(Q) and p, nonzero, i.e., no stable super-
solid state. For small values of «, the results are similar to
those obtained for a square lattice.®

In contrast, for a large «, the behaviors are quite different.
Figure 3(a) shows the boson density as a function of wu for
a=0.9 and #/V=0.15. We can see that except the Mott insu-
lator, there are p=1/3, 2/3 solid states while the p=1/2 solid
state does not exist. In this case, there is a jump in p above
p=2/3, indicating a first-order phase transition; while it is
continuous below p=2/3, indicating a continuous phase
transition. Figures 3(b)-3(d) show S(Q) and p, as functions
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FIG. 3. (Color online) (a) The boson density p, (b) the structure
factors S(Q)), (c) S(Q,), (d) the superfluid p, as functions of the
chemical potential u for a=0.9, t/V=0.15 with n=12 and B=24,
respectively.

of w, respectively. The anisotropy of p, is quite weak as ¢’
~t. In the density region around p=1/2, the structure factor
S(Q)=0 while the superfluid density p,# 0. The ground state
is a SF. In the density region near p=2/3 (p<<2/3), both
S(Q;) and p, are nonzero, i.e., a supersolid phase emerges.
This behavior is a little different from that in the isotropic
triangular lattice, where a supersolid phase exists everywhere
between the p=1/3 and the p=2/3 solid. The finite-size
scaling of p, and S(Q) for @=0.9, 1/ V=0.15 is demonstrated
in Fig. 7(a). For u=3.65 (near p=2/3), both p, and S(Q,) are
finite in the thermodynamic limit, confirming the survival of
the supersolid phase. In the superfluid phase (around half
filling), such as w=3.25, S(Q) extrapolates to zero while p, is
finite.

Now we begin to study the intermediate anisotropy. Fig-
ure 4 shows the results for a=0.5 and #/V=0.175. The boson
density p as a function of u is shown in Fig. 4(a). We can see
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FIG. 4. (Color online) (a) The boson density p, (b) the structure
factors S(Q)), (¢) S(Q,), (d) the superfluid p, as functions of the
chemical potential u for a=0.5, t/V=0.175 with n=18 and S=36,
respectively.
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FIG. 5. (Color online) (a) The boson density p, (b) the structure
factors S(Q)), (c) S(Q,), (d) the superfluid p, as functions of the
chemical potential u for a=0.5, t/V=0.2 with n=18 and B=36,
respectively.

that for a=0.5, both the p=1/2 solid plateau and the p
=1/3,2/3 solid plateaux exist, and the p=1/2 solid plateau
is much larger than that of p=1/3,2/3. Figures 4(b)-4(d)
show S(Q) and p, as functions of w, respectively. Jumps are
observed at each critical point, i.e., from the p=1/2 solid to
the p>1/2 SF and from the p=2/3 solid to the p>2/3(p
<2/3) SE. For @=0.5, we find no region for both superfluid
and structure factors nonzero, i.e., there is no stable super-
solid phase.

In Fig. 5, with slightly larger #/ V=0.2, the p=1/2 solid is
still observed while the p=2/3 solid disappears. Both the
structure factors and the superfluid density are discontinuous
at the transition point w/V~3.2. This indicates a first-order
phase transition from the p=1/2 solid to the SF, and also
there is no stable supersolid phase.

To further investigate the effects of frustration on the for-
mation of a supersolid, we measure the anisotropy depen-
dence at half filling. As we have discussed above, model (1)
is symmetric with respect to =2+« due to the particle-hole
symmetry. Below we focus our study at half filling, and
choose u=2+a. Figure 6 shows the superfluid p; and the
structure factors S(Q) as functions of the anisotropic strength
« at half filling. With increasing «, we observe phase transi-
tions from the p=1/2 solid phase to the p=1/2 SF phase and
then to the p=1/2 SS phase. For «<0.83, p,=0 and S(Q,)
=0 while the structure factor S(Q) at ordering wave vector
0,=(2m,0) is nonzero. The ground state is a p=1/2 check-
erboard solid. For 0.83<a<0.9, p,# 0 while S(Q,)=0 and
S(Q,)=0. The ground state is a superfluid phase. For «
>0.9, S(Q,) is zero, while both the superfluid density p, and
the structure factor S(Q) at ordering wave vector Q,;
=(4m/3,0) are nonzero. The ground state is a stable super-
solid phase at half filling. The finite-size scaling of p, and
S(Q) at half filling is shown in Fig. 7(b). For a=0.88, both
S(Q,) and S(Q,) extrapolate to zero in the thermodynamic
limit, revealing the absence of a supersolid; while for «
=0.98 (quite close to the isotropic limit), both S(Q;) and p
extrapolate to finite values, confirming the existence of a
supersolid. This indicates that for a two-dimensional aniso-

014513-3



JING-YU GAN

001 @

Ps

0.00 . : ; : : ;

021 (@

s@,)

Q2:(2n,0)
0.0 +

(b)
0.02 -

s(@Q,)

Q4=(4x/3,0)
0.00 ' } t } 4 ' jassttevet

(a)

0.49 . I . I . I . I
0.0 0.2 04 0.6 0.8 1.0

o

FIG. 6. (a) The boson density p, (b) the structure factors S(Q,),
(c) S(Q,), (d) the superfluid p, as functions of the anisotropic
strength a=¢"/r=V'/V at half filling (u=2+a) for /V=0.1 with
n=12 and B=24. There are phase transitions from the p=1/2 solid
phase to the superfluid phase at around a=0.83 and then to the
supersolid phase at around «=0.9.

tropic triangular lattice with nearest-neighbor interactions, a
supersolid phase survives only around the isotropic limit.

IV. CONCLUSION

We have studied the hard-core Bose-Hubbard model with
nearest-neighbor interactions on an anisotropic triangular lat-
tice by using the quantum Monte Carlo simulations. The ef-
fects of the geometric frustration or the anisotropic strength,
characterized by the ratio '/t between the intrachain nearest-
neighbor hopping 7 and the interchain hopping ¢, are pre-
sented. We find that for small values of anisotropy ratio ¢'/t,
a solid state emerges at p=1/2 and a supersolid is unstable
toward phase separation. These behaviors are similar to those
of a square lattice without frustration. For large values of
anisotropy ratio t'/t, solid states emerge at p=1/3, 2/3 and a
supersolid phase is stable in the region p<<2/3. In addition,
for intermediate values of anisotropy ratio ¢'/¢, three kinds of
solid states at fillings p=1/3,1/2,2/3 coexist and no stable
supersolid phase is observed.
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FIG. 7. (Color online) Finite-size scaling of the superfluid den-
sity p, and the static structure factor S(Q) (a) for u=3.25,3.65 with
a=0.9, t/V=0.15 (see Fig. 3); (b) for @=0.88,0.98 at half filling
(see Fig. 6). The inverse temperature B=36.

At half filling, we find solid-superfluid-supersolid transi-
tions as the geometric frustration ¢'/¢ is increased. In particu-
lar, we find that the supersolid phase survives only in a nar-
row region near the isotropic limit (¢ /¢=1). This means that
the supersolid phase that appears in the isotropic limit is
rather unstable under the presence of a small anisotropy.
These results provide the requirement for finding the super-
solid phases in real systems, i.e., the systems have to be quite
close to the isotropic triangular limit with highly geometric
frustration.
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